Synthesis and properties of stabilized bis(2-oxo-2H-cyclohepta[b]-furan-3-yl)phenylmethyl and bis(1,2-dihydro-2-oxo- N -phenylcyclohepta[$[$]pyrrol-3-yl)phenylmethyl cations and their derivatives: remarkable substituent effect on the conformation and stability of the cations

Shin-ichi Naya and Makoto Nitta *
Department of Chemistry, School of Science and Engineering, and Materials Research Laboratory for Bioscience and Photonics, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan

Received (in Cambridge, UK) 17th August 2000, Accepted 11th September 2000
First published as an Advance Article on the web 8th November 2000

Abstract

The reactions of benzaldehyde and 4 -substituted benzaldehyde with 2 H -cyclohepta[b]furan-2-one $\mathbf{5}$ and 1,2-dihydro-N-phenylcyclohepta[b]pyrrol-2-one 6 in TFA- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afford two series of bis(2-oxo- 2 H -cyclohepta[b]furan-3yl)arylmethanes $7 \mathbf{7 a}-\mathbf{e}$ and bis(1,2-dihydro-2-oxo- N-phenylcyclohepta[b]pyrrol-3-yl)arylmethanes $\mathbf{8 a - e}$, respectively. Upon oxidation reaction with DDQ followed by addition of $60 \% \mathrm{HPF}_{6}$, the methane derivatives $7 \mathbf{a}-\mathbf{e}$ and $\mathbf{8 a - e}$ are converted to the corresponding methyl cations $\mathbf{9 a - e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$, respectively. The stability of cations $\mathbf{9 a}-\mathbf{e}$ and 10a-e is expressed by the $\mathrm{p} K_{\mathrm{R}^{+}}$values, which are determined spectrophotometrically, as 12.4 to 7.9 and 13.9 to 11.1 , respectively. The electrochemical reductions of $\mathbf{9 a}-\mathbf{e}$ and $\mathbf{1 0 a}-\mathbf{e}$ exhibit reversible waves and low reduction potentials at -0.55 to -0.23 and -0.72 to $-0.44\left(\mathrm{~V}\right.$ vs. $\left.\mathrm{Ag} / \mathrm{Ag}^{+}\right)$, respectively, upon cyclic voltammetry (CV); the values are lower than those of the related compounds, diazulen-1-ylarylmethyl cations. Good linear correlations between the $\mathrm{p} K_{\mathrm{R}^{+}}$values and $E 1_{\text {red }}$ potentials of $9 \mathrm{a}-\mathbf{e}$ and $\mathbf{1 0 a - e}$ are obtained. These values ($\mathrm{p} K_{\mathrm{R}^{+}}$and $E 1_{\text {red }}$) are dependent on the substituents on the phenyl group; however, they do not correlate with the substituent constants of the Hammett equation. This feature is ascribed to the difference in the most stable conformation of the three aromatic groups in the cations; the phenyl group having a more electron-donating substituent is prone to become more planar to the reference plane. The most stable conformation is deduced on the basis of MO calculations (MOPAC, AM1 method). The ${ }^{1} \mathrm{H}$ NMR and UV-vis spectral studies also rationalize the conformational change of the three aromatic rings, depending on the substituent on the benzene ring. On the basis of the study, the stabilizing ability of the 4 -substituted phenyl group and heteroazulenes for the cations is clarified to be in the order of 4-dimethylaminophenyl $>1,2$-dihydro-2-oxo- N-phenylcyclohepta[b]pyrrol-3-yl >2-oxo- 2 H -cyclohepta-[b]furan-3-yl ~4-methoxyphenyl.

Introduction

Recently, the synthesis and properties of a series of extremely stabilized azulene analogues of the triphenylmethyl cation, i.e., triazulen-1-ylmethyl, ${ }^{1-7}$ diazulen-1-ylphenylmethyl, ${ }^{1,4,6-10}$ and azulen-1-yldiphenylmethyl cations ${ }^{1,4,6,6,9}$ and their derivatives, have been investigated extensively. Regarding the azulene-substituted methyl cations, theoretical calculations and a large dipole moment of azulene reasonably predict that azulene should stabilize carbocations attached at the 1-position to exhibit good stability with high $\mathrm{p} K_{\mathrm{R}^{+}}$values. Since heteroazulenes such as $2 H$-cyclohepta $[b]$ furan-2-one 5^{11} and 1,2-dihydro- N-phenylcyclohepta[b]pyrrol-2-one $\mathbf{6}^{12}$ (Scheme 1) have a molecular framework similar to that of azulene and undergo electrophilic attack at the 3-position, ${ }^{13,14}$ thus, the heteroazulenes 5 and $\mathbf{6}$ should also stabilize cations attached at the 3-position. From this point of view, we have recently reported the synthesis and properties of heteroazulene analogues of the triphenylmethyl cations, tris(2-oxo- 2 H cyclohepta[$b]$ furan- 3 -yl)-, $\quad \operatorname{tris}(1,2$-dihydro- 2 -oxo- N-phenylcyclohepta[b]pyrrol-3-yl)-, and tris(1,2-dihydro- N-methyl-2oxocyclohepta $[b]$ pyrrol-3-yl)methyl cations, 1a-c. ${ }^{15}$ The proton signals in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 a - c}$ appeared as broad signals, and this feature is ascribed to the slow conformational change arising from steric hindrance of three bulky hetero-
azulenes. The $\mathrm{p} K_{\mathrm{R}}+$ values of these cations $\mathbf{1 a}-\mathbf{c}$ were measured to be 9.7, 12.2, and 13.1, respectively, and the reduction potentials were also measured to characterize the properties of the cations. The $\mathrm{p} K_{\mathrm{R}^{+}}$values of $\mathbf{1 a - c}$ are $16.1-19.5 \mathrm{pH}$ units higher than the value of the triphenylmethyl cation $\left(\mathrm{p} K_{\mathrm{R}^{+}}=-6.44\right)^{16}$ and are close to the values of the triazulen-1-ylmethyl cation ($\mathrm{p} K_{\mathbf{R}^{+}}=10.5$) and its derivatives. The reduction potentials of 1a-c were -0.31 to $-0.62\left(E 1_{\text {red }}\right)$ and -0.95 to $-1.33\left(E 2_{\text {red }}\right)$, and two reduction waves were reversible. These values are much lower than those of the triazulen-1-ylmethyl cation derivatives, and thus, heteroazulenes are shown to stabilize not only cations, but also the corresponding radicals and anions. The energy levels of the LUMO obtained by MO calculation (MOPAC, AM1 method) ${ }^{17}$ of azulene, 5 and 6 are $-0.87,-1.19$, and -0.93 eV , and the energy levels of the HOMO are calculated to be $-8.02,-8.69$, and -8.28 eV , respectively. The stabilizing effect of 5 and $\mathbf{6}$ toward the radical and anion species would be ascribed to the low-lying HOMO and/or LUMO. On the other hand, the synthesis and properties of Malachite Green ($4,4^{\prime}$ ' bis(dimethylamino)triphenylmethyl chloride) derivatives 2a-d ${ }^{18}$ and diazulen-1-yl(4-substituted-phenyl)methyl cation derivatives $3 a-\mathbf{c}^{4,6,9}$ have been investigated to gain insight into the substituent effect. The $\mathrm{p} K_{\mathrm{R}^{+}}$values of these cations depend on the substituents on the phenyl group. The $\mathrm{p} K_{\mathrm{R}^{+}}$values of $\mathbf{2 a}-\mathbf{c}^{18}$ were determined to be $9.36,7.18$, and 6.84 , respectively,

$$
\begin{aligned}
& \text { 1a: } \mathrm{X}=\mathrm{O} \\
& \text { b : } \mathrm{X}=\mathrm{NPh} \\
& \text { c: } \mathrm{X}=\mathrm{NMe} \\
& \text { 2a-d } \\
& \text { a: } \mathrm{R}=\mathrm{NMe}_{2} \\
& \text { b: } \mathrm{R}=\mathrm{OMe} \\
& \text { c: } \mathrm{R}=\mathrm{H} \\
& \text { d: } \mathrm{R}=\mathrm{Cl} \\
& 9 \mathrm{a}-\mathrm{e} \cdot \mathrm{PF}_{6}{ }^{-} \\
& 10 a-\mathrm{e} \cdot \mathrm{PF}_{6}{ }^{-} \\
& \mathbf{a}: \mathrm{R}=\mathrm{NMe}_{2} ; \mathbf{b}: \mathrm{R}=\mathrm{OMe} ; \mathbf{c}: \mathrm{R}=\mathrm{H} ; \mathbf{d}: \mathrm{R}=\mathrm{Cl} ; \mathbf{e}: \mathrm{R}=\mathrm{CN}
\end{aligned}
$$

Scheme 1 Reagents and conditions: i, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{TFA}$ (5:1), rt; ii, (a) DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) $60 \% \mathrm{HPF}_{6}$.
and those of $\mathbf{3 a}-\mathbf{c}^{4,6,9}$ were also measured to be 13.2, 11.7, and 10.7, respectively. In order to clarify the stabilizing effect of heteroazulenes in cations, related radicals and anion species, we studied the synthesis and properties of bis(2-oxo- 2 H -cyclohepta[b]furan-3-yl)-, \quad bis(1,2-dihydro-2-oxo- N-phenyl-

3a-c
a : $\mathrm{R}^{1}=\mathrm{NMe}_{2}$
b: $\mathrm{R}^{1}=\mathrm{OMe}$
c: $\mathrm{R}^{1}=\mathrm{H}$

$$
\begin{aligned}
& \text { 9a-e }: \mathrm{X}=\mathrm{O} \quad \mathbf{1 0 a - e}: \mathrm{X}=\mathrm{NPh} \\
& \mathbf{a}: \mathrm{R}=\mathrm{NMe}_{2} ; \mathbf{b}: \mathrm{R}=\mathrm{OMe} \\
& \mathbf{c}: \mathrm{R}=\mathrm{H} ; \mathbf{d}: \mathrm{R}=\mathrm{Cl} \\
& \mathbf{e}: \mathrm{R}=\mathrm{CN}
\end{aligned}
$$

cyclohepta[b]pyrrol-3-yl)phenylmethyl cations, and their 4 -substituted phenyl derivatives, $9 \mathrm{a}-\mathrm{e}$ and 10a-e. From the substituent effect on 9a-e and 10a-e, a linear free energy relationship between the $E 1_{\text {red }}$ and $\mathrm{p} K_{\mathrm{R}^{+}}$is obtained. Moreover, comparisons of the stabilizing effect of heteroazulenes 5 and $\mathbf{6}$ with that of the 4 -substituted phenyl group were investigated. The most stable conformations of $9 \mathbf{a}-\mathbf{e}$ and $\mathbf{1 0 a - e}$ are predicted on the basis of MO calculations (MOPAC, AM1 method). ${ }^{17}$ The deviations of the three aromatic groups of $9 \mathrm{a}-\mathrm{e}$ and $\mathbf{1 0 a}-\mathbf{e}$ depend on the electron-donating ability of the 4 -substituted phenyl group. The ${ }^{1} \mathrm{H}$ NMR and UV-vis spectral studies rationalize the difference in conformation of the three aromatic groups of cations 9a-e and 10a-e. We report herein the results in detail.

Results and discussion

Synthesis
Although substituted benzaldehydes had reacted with azulenes in acetic acid to give diazulen-1-ylarylmethane derivatives, ${ }^{1-10}$ the heteroazulene 5 did not react with 4 -dimethylaminobenzaldehyde in acetic acid at room temperature for 96 h , and $\mathbf{5}$ was recovered quantitatively. Thus, the condensation reactions of heteroazulenes 5 and 6 with benzaldehyde and 4 -substituted benzaldehydes $4 \mathrm{a}-\mathbf{e}$ were carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-TFA $(5: 1)$ to give the methane derivatives $7 \mathbf{a}-\mathbf{e}$ and $\mathbf{8 a - e}$ in good yield, respectively (Scheme 1, Table 1). ${ }^{15}$ The structures of the methane derivatives $7 \mathbf{a}-\mathbf{e}$ and $\mathbf{8 a - e}$ were assigned on the basis of their IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data, as well as mass spectral data and elemental analyses. The hydride abstractions of $7 \mathbf{a}-\mathbf{e}$ and $\mathbf{8 a}-\mathbf{e}$ with DDQ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature followed by addition of 60% aqueous HPF_{6} solution gave the salts $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$in the yields listed in Table 1.

Spectroscopic properties of $9 \mathrm{a}-\mathrm{e} \cdot \mathrm{PF}_{6}{ }^{-}$and $10 \mathrm{a}-\mathrm{e} \cdot \mathrm{PF}_{6}{ }^{-}$
The salts $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$crystallized easily to give

Table 1 Results for the preparation of methane derivatives 7a-e and $\mathbf{8 a - e}$, and methylium salts $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$

Benzaldehyde$4 \mathbf{a}-\mathbf{e}$	Compound 5 or 6	Condensation		Hydride abstraction	
		Product	Yield (\%)	Product	Yield (\%)
4a	5	7 a	100	9a. $\mathrm{PF}_{6}{ }^{-}$	100
4b	5	7b	97	$9 \mathrm{~b} \cdot \mathrm{PF}_{6}{ }^{-}$	98
4 c	5	7c	93	9c. $\mathrm{PF}_{6}{ }^{-}$	100
4d	5	7d	96	9d. $\mathrm{PF}_{6}{ }^{-}$	81
4 e	5	7 e	100	$9 \mathrm{e} \cdot \mathrm{PF}_{6}{ }^{-}$	71
4 a	6	8a	100	10a $\cdot \mathrm{PF}_{6}{ }^{-}$	100
4b	6	8b	81	$10 \mathrm{~b} \cdot \mathrm{PF}_{6}{ }^{-}$	100
4 c	6	8c	88	10c. $\mathrm{PF}_{6}{ }^{-}$	85
4d	6	8d	74	$10 \mathrm{~d} \cdot \mathrm{PF}_{6}{ }^{-}$	80
4e	6	8 e	71	10e $\cdot \mathrm{PF}_{6}{ }^{-}$	62

Fig. 1 UV-vis spectra of cations $9 \mathrm{a}-\mathrm{e}$ in acetonitrile.
complexes containing $\mathrm{H}_{2} \mathrm{O}$ or a solvent or HPF_{6} in the crystal lattice; this feature is similar to the cases of triheteroazulen-3ylmethyl cations 1a-c and Crystal Violet [tris(4-dimethylaminophenyl)methyl chloride], which forms two crystal structures containing $\mathrm{H}_{2} \mathrm{O}$ as the monohydrate and the nonahydrate ${ }^{19}$ Thus, satisfactory analytical data of these salts were not obtained; however, mass spectra of $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}$ $\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$ionized by FAB exhibited the correct $\mathrm{M}^{+}-\mathrm{PF}_{6}$ ion peaks, which are indicative of the cationic structure of these compounds. The characteristic absorption bands of the counter ion $\mathrm{PF}_{6}{ }^{-}$are observed at $838-845 \mathrm{~cm}^{-1}$ in the IR spectra of 9 a$\mathrm{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathrm{e} \cdot \mathrm{PF}_{6}{ }^{-}$. UV-vis spectra of $9 \mathrm{a}-\mathrm{e}$ and $\mathbf{1 0 a}-\mathrm{e}$ in $\mathrm{CH}_{3} \mathrm{CN}$ are shown in Fig. 1 and 2, respectively. The spectra of 9b-e and 10b-e resemble each other, while the spectra of 9a and 10a, both of which have a dimethylamino group, show remarkable changes and an appreciable red-shift by 50 and 25 nm in the longest wavelength absorption maxima, as compared with those of the other cations, respectively (vide infra). In the ${ }^{1} \mathrm{H}$ NMR spectra, the methine protons ($\delta 5.23-6.28$) of methane derivatives $\mathbf{7 a - e}$ and $\mathbf{8 a}-\mathbf{e}$ disappeared in the salts $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$ and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$. Although the proton signals of $\mathbf{9 a} \cdot \mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$ appear as sharp signals, the proton signals on the sevenmembered ring of $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$appear as several broad signals. Thus, the slow conformational change of the heteroazulene moieties of $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$would occur on the ${ }^{1} \mathrm{H}$ NMR time scale at room temperature, probably because of the steric hindrance. The two heteroazulene rings in each of $\mathbf{9 a - e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}$ $\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$are observed to be equivalent in the ${ }^{1} \mathrm{H}$ NMR spectra. These characteristics are also observed in the ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{9 a}-\mathrm{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathrm{e} \cdot \mathbf{P F}_{6}{ }^{-}$.

Fig. 2 UV-vis spectra of cations 10a-e in acetonitrile.

Fig. 3 Cyclic voltammogram of $\mathbf{1 0 c}$ in MeCN .

Stability of the methyl cations $9 \mathrm{a}-\mathrm{e}$ and $10 \mathrm{a}-\mathrm{e}: \mathrm{p} K_{\mathrm{R}^{+}}$values and reduction potentials ($E 1_{\text {red }}$ and $E 2_{\text {red }}$)
The affinity of the carbocation toward hydroxide ions, expressed by the $\mathrm{p} K_{\mathrm{R}^{+}}$value, is the most common criterion of carbocation stability. ${ }^{20}$ The $\mathrm{p} K_{\mathrm{R}}+$ values of the cations $9 \mathrm{a}-\mathrm{e}$ and 10a-e are obtained spectrophotometrically and summarized in Table 2 along with those of the reference compounds diazulen1 -ylphenylmethyl cations 3a-c. ${ }^{4,6,9}$ The equilibrium of the reaction of the hydroxide ion with $9 \mathbf{a}-\mathbf{e}$ and $\mathbf{1 0 a} \mathbf{e}$ is not completely reversible. This feature may be ascribed to the instability of neutralized products under the conditions of the $\mathrm{p} K_{\mathrm{R}^{+}}$measurement. Immediate (5 s) acidification of alkaline solutions ($c a$. $\mathrm{pH} 14)$ of $\mathbf{9 a - e}$ and $\mathbf{1 0 a}-\mathbf{e}$ with TFA regenerated the absorption maxima of the cations in the visible regions in $85-90 \%$. As expected, the heteroazulenes $\mathbf{5}$ and $\mathbf{6}$ effectively stabilize the cations, and the $\mathrm{p} K_{\mathrm{R}^{+}}$values of $9 \mathrm{a}-\mathrm{e}$ and 10a-e are extremely high, as in the cases of triheteroazulen-3-ylmethyl cations 1ac. ${ }^{15}$ The $\mathrm{p} K_{\mathrm{R}^{+}}$values of the cations $9 \mathrm{a}-\mathrm{c}$ are slightly lower by $0.8-1.5 \mathrm{pH}$ units than those of the diazulen-1-ylphenylmethyl cations 3a-c having a similar substituent on the 4-position of the phenyl group, respectively, ${ }^{4,6,9}$ while the cations 10a-c express higher $\mathrm{p} K_{\mathrm{R}}+$ values by $0.7-1.5 \mathrm{pH}$ units than those of the cations 3a-c, respectively (Table 2). The cations 10a-e are more stable than $9 \mathrm{a}-\mathrm{e}$, respectively, because of the electrondonating property of the nitrogen atom.

The reduction potentials of $9 \mathrm{a}-\mathrm{e}$ and $\mathbf{1 0 a}-\mathrm{e}$ determined by cyclic voltammentry (CV) in $\mathrm{CH}_{3} \mathrm{CN}$ are also summarized in Table 2, together with those of the reference cations 3a-c. ${ }^{4,6,9}$ The reduction waves of $9 \mathbf{a}-\mathbf{e}$ and $\mathbf{1 0 a}-\mathbf{e}$ were reversible under the conditions of CV measurements, and they showed two reversible waves (Fig. 3 for 10c and Table 2). The two waves were explained by the formation of stable radical species 11a-e and 12a-e and anion species 13a-e and 14a-e, respectively (Scheme 2). These reduction behaviors of $9 \mathbf{a - e}$ and 10a-e are similar to those of cations 1a-c. ${ }^{15}$ Consequently, the

Table $2 \mathrm{p} K_{\mathrm{R}}+$ values and reduction potentials ${ }^{a}$ of cations $\mathbf{9 a}-\mathbf{e},{ }^{b} \mathbf{1 0 a}-\mathbf{e}^{b}$ and reference compounds $\mathbf{3 a}-\mathbf{c}$

Compound	$\mathrm{p} K_{\mathbf{R}^{+}}$	$E 1_{\text {red }}$	$\left(E_{\text {cathode }}, E_{\text {anode }}\right)$	$E 2_{\text {red }}$	$\left(E_{\text {cathode }}, E_{\text {anode }}\right)$
$\mathbf{9 a}$	12.4	-0.55	$(-0.58,-0.51)$	-1.15	$(-1.20,-1.09)$
$\mathbf{9 b}$	1.0	-0.36	$(-0.40,-0.33)$	-1.08	$(-1.13,-1.02)$
$\mathbf{9 c}$	9.3	-0.31	$(-0.34,-0.28)$	-1.03	$(-1.08,-0.99)$
$\mathbf{9 d}$	9.1	-0.29	$(-0.32,-0.26)$	-0.99	$(-1.03,-0.94)$
$\mathbf{9 e}$	7.9	-0.23	$(-0.26,-0.20)$	-0.88	$(-0.90,-0.86)$
$\mathbf{1 0 a}$	13.9	-0.71	$(-0.74,-0.68)$	-1.37	$(-1.43,-1.31)$
$\mathbf{1 0 b}$	12.2	-0.58	$(-0.60,-0.55)$	-1.31	$(-1.36,-1.26)$
$\mathbf{1 0 c}$	12.0	-0.53	$(-0.56,-0.50)$	-1.29	$(-1.32,-1.25)$
$\mathbf{1 0 d}$	12.0	-0.51	$(-0.54,-0.48)$	-1.26	$(-1.30,-1.22)$
$\mathbf{1 0}$	11.1	-0.44	$(-0.47,-0.41)$	-1.08	$(-1.10,-1.38)$
$\mathbf{3 a} \mathbf{a}^{c}$	13.2	-0.87		-1.64^{f}	
$\mathbf{3 b}^{d}$	11.7	-0.71		-1.55	
$\mathbf{3 c}^{e}$	10.5	-0.66		-1.52^{f}	

${ }^{a} \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$; mean value of the cathodic and anodic peaks. ${ }^{\boldsymbol{b}} \mathbf{9} \mathbf{a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$were used for the measurement. ${ }^{c}$ Ref. $9 .{ }^{d}$ Ref. $6 .{ }^{e}$ Ref. 4. ${ }^{f}$ Irreversible process.

Fig. 4 Plot of $\mathrm{p} K_{\mathrm{R}^{+}}$values against $E 1_{\text {red }}$ of $\mathbf{9 a - e}, \mathbf{1 0 a}-\mathbf{e}$, and $\mathbf{1 a}-\mathbf{c}$.

heteroazulene rings stabilize not only carbocations, but also radical species 11a-e and 12a-e and anions 13a-e and $\mathbf{1 4 a}-\mathbf{e}$. The stabilizing effect of heteroazulenes toward the radical species would be attributable to the captodative effect ${ }^{21}$ of the electron-withdrawing carbonyl group and the electron-
donating oxygen and nitrogen atoms in the heteroazulene moieties.

In Fig. 4, p $K_{\mathrm{R}^{+}}$values of cations $\mathbf{9 a - e}$ and $\mathbf{1 0 a}-\mathbf{e}$ were plotted against $E 1_{\text {red }}$ of these cations. The units of $E 1_{\text {red }}$ and $\mathrm{p} K_{\mathrm{R}^{+}}$ values were converted to $\mathrm{kJ} \mathrm{mol}^{-1}\left[-96.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \times E 1_{\mathrm{red}} / \mathrm{V}\right.$ and $\left.5.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \times\left(\mathrm{p} K_{\mathrm{R}^{+}}-14\right)\right]$. A linear correlation line was obtained, and the slope and y-intercept of this line were 0.72 and -48.35 , respectively (eqn. (1), correlation coefficient $=0.991$).

$$
\begin{equation*}
\left(\Delta G_{\mathrm{i}}\right)=0.72\left(\Delta G_{\mathrm{et}}\right)-48.35 \tag{1}
\end{equation*}
$$

Okamoto et al. have reported the linear free energy relationships of substituted tropyl and cyclopropenyl cations. ${ }^{22}$ By a modified analysis, the reaction of the cation with the hydroxide ion (eqn. (2)) is divided into an electron-transfer reaction (eqn. (3)) and a radical-coupling reaction (eqn. (4)). The free-

$$
\left\{\begin{array}{l}
\mathrm{R}^{+}+{ }^{-} \mathrm{OH} \rightleftharpoons \mathrm{ROH} \quad \Delta G_{\mathrm{i}} \tag{2}\\
\mathrm{R}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{R}^{\cdot} \quad \Delta G_{\mathrm{et}} \\
\mathrm{R}^{\cdot}+{ }^{\circ} \mathrm{OH} \rightleftharpoons \mathrm{ROH} \quad \Delta G_{\mathrm{d}}
\end{array}\right.
$$

energy difference for the reaction of the cation with the hydroxide ion (ΔG_{i} in eqn. (2)) is derived from the $\mathrm{p} K_{\mathrm{R}}{ }^{+}$values, and the free-energy difference of the electron-transfer reaction $\left(\Delta G_{\text {et }}\right.$ in eqn. (3)) is derived from the first reduction potential $\left(E 1_{\text {red }}\right)$. According to this definition, the more stable cation has larger ΔG_{i} and $\Delta G_{\text {et }}$ values. However, the $\Delta G_{\text {et }}$ represents the difference in thermodynamic stability between the cations and the corresponding radicals. Eqn. (5), (6) and (7) are obtained by the

$$
\left\{\begin{array}{l}
\mathrm{R}_{1} \mathrm{OH}+\mathrm{R}_{2}^{+} \rightleftharpoons \mathrm{R}_{1}^{+}+\mathrm{R}_{2} \mathrm{OH} \quad \Delta \Delta G_{\mathrm{i}} \tag{5}\\
\mathrm{R}_{1}^{\cdot}+\mathrm{R}_{2}^{+} \rightleftharpoons \mathrm{R}_{1}^{+}+\mathrm{R}_{2}^{\cdot} \quad \Delta \Delta G_{\mathrm{et}} \\
\mathrm{R}_{1} \mathrm{OH}+\mathrm{R}_{2}^{\cdot} \rightleftharpoons \mathrm{R}_{1}^{\cdot}+\mathrm{R}_{2} \mathrm{OH} \quad \Delta \Delta G_{\mathrm{d}}
\end{array}\right.
$$

subtraction of eqn. (2), (3) and (4) for one cation from those for the other cation, and thus, they show the difference in stability for the two cations. By this definition, $\Delta \Delta G_{\mathrm{i}}$ represents the sum of $\Delta \Delta G_{\text {et }}$ and $\Delta \Delta G_{\mathrm{d}}$ (eqn. (8)), and the value of $\Delta \Delta G_{\mathrm{i}}$ divided by $\Delta \Delta G_{\text {et }}$ corresponds to the slope of the regression line (eqn. (9)). The slope of the line was obtained as 0.72 , which is smaller than 1.0. Hence, from eqn. (8) and (9), $\Delta \Delta G_{d}$ linearly

$$
\begin{gather*}
\Delta \Delta G_{\mathrm{i}}=\Delta \Delta G_{\mathrm{et}}+\Delta \Delta G_{\mathrm{d}} \tag{8}\\
\Delta \Delta G_{\mathrm{i}}=0.72 \Delta \Delta G_{\mathrm{et}} \tag{9}
\end{gather*}
$$

correlates with $\Delta \Delta G_{\text {et }}$ with a negative slope (-0.28), eqn. (10).

Table 3 Hammett substituent constants $\sigma_{p}{ }^{a}$ and dihedral angles $\theta_{1}-\theta_{3}$ for the most stable conformation of cations $9 \mathbf{a}-\mathbf{e}$ and 10a-e

Compound	R	$\sigma_{\mathrm{p}}{ }^{a}$	$\begin{aligned} & \theta_{1}{ }^{b} \\ & \operatorname{deg} \end{aligned}$	$\begin{aligned} & \theta_{2}{ }^{b} \\ & \operatorname{deg} \end{aligned}$	$\begin{aligned} & \theta_{3}^{b} / \\ & \text { deg } \end{aligned}$
9 a	NMe_{2}	-0.83	39.5	16.9	40.2
9 b	OMe	-0.27	41.7	17.4	39.3
9 c	H	0	59.1	18.7	30.9
9d	Cl	0.23	58.3	18.9	31.3
9 e	CN	0.66	59.6	18.5	31.2
10a	NMe_{2}	-0.83	42.1	18.2	44.7
10b	OMe	-0.27	49.2	16.1	43.0
10c	H	0	59.5	16.7	40.5
10d	Cl	0.23	59.2	16.6	40.3
10e	CN	0.66	62.0	16.6	39.5

${ }^{a}$ Ref. 24. ${ }^{b}$ Dihedral angles $\theta_{1}-\theta_{3}$ (in deg) denote deviation of the planes of the heteroazulenes and phenyl group from the reference plane (Fig. 6).

Fig. 5 The Hammett plot of $\mathrm{p} K_{\mathrm{R}^{+}}$values of 9a-e and 10a-e.

$$
\begin{equation*}
\Delta \Delta G_{\mathrm{d}}=-0.28 \Delta \Delta G_{\mathrm{et}} \tag{10}
\end{equation*}
$$

Therefore, from eqn. (10) it can be deduced that the more stable cation gives a less stable radical in single-electron reduction of 9a-e and 10a-e. Thus, the more electron-donating substituent on the phenyl group not only stabilizes the cations, but also destabilizes the radicals. The plots of the cation 1a-c lie on the same regression line. This feature suggests that cations $9 \mathbf{9 a - e}$, $\mathbf{1 0 a}-\mathbf{e}$, and $\mathbf{1 a - c}$ are stabilized in a similar manner.

Substituent effect and conformational change for cations 9a-e and 10a-e

The correlation between the $\mathrm{p} K_{\mathrm{R}^{+}}$values of $9 \mathrm{a}-\mathbf{e}$ and $10 \mathrm{a}-\mathbf{e}$ and Hammett constants $\sigma_{p}{ }^{23}$ of the substituent on the phenyl group is shown in Fig. 5. No linear correlations are obtained; the $\mathrm{p} K_{\mathrm{R}^{+}}$values are larger than the expected values when the electron-withdrawing substituents are introduced on the phenyl group. In order to gain insight into the relationship, MO calculations of the cations $9 \mathbf{a}-\mathbf{e}$ and 10a-e were carried out using the AM1 method (MOPAC97). ${ }^{17}$ A larger π-conjugative effect is obtained with a more planar conformation, while the more planar conformation experiences larger steric hindrance between the substituted aromatic rings. The most stable conformations of $\mathbf{9 a - e}$ and 10a-e obtained by MO calculations are summarized in Table 3 . The dihedral angles, θ_{1}, θ_{2}, and θ_{3}, express deviation from the plane of the phenyl group and heteroazulenes from the reference plane (the plane which is defined by the three arylic ipso carbons, Fig. 6). In Fig. 7 and 8,

Fig. 6

Fig. 7 The Hammett plot of dihedral angles of 9a-e.

Fig. 8 The Hammett plot of dihedral angles of 10a-e.
the θ_{1}, θ_{2}, and θ_{3} values of $9 \mathbf{a}-\mathbf{e}$ and $\mathbf{1 0 a}-\mathbf{e}$ were plotted against the substituent constants of the Hammett equation. Since the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{9 a - e}$ and $\mathbf{1 0 a}-\mathbf{e}$ show two heteroazulene moieties to be equivalent, the heteroazulene rings of these cations can rotate freely around the most stable conformations. The dihedral angle of one of the heteroazulenes $\left(\theta_{2}\right)$ does not depend on the substituent on the phenyl group. However, the

Table 4 The longest wavelength absorption maxima in UV-vis spectra of cations 9a-e, 10a-e, 2a-d, and 3a-c

decrease of electron-donating ability of the substituent induces an increase of θ_{1} and decrease of θ_{3}. These features may be explained as follows: the phenyl group having large electrondonating ability becomes more planar with the reference plane (small dihedral angle θ_{1}) to stabilize the cation effectively. If the electron-donating ability of the substituent on the phenyl group were decreased, heteroazulenes become planar with the reference plane to stabilize the cations, and thus, the cations do not lose stability as expected by the Hammett equation.

This nature is confirmed by ${ }^{1} \mathrm{H}$ NMR and UV-vis spectral data. Five proton signals on the seven-membered ring of the heteroazulene of the cations $\mathbf{9 a - e}$ are shifted to low-field compared with those of methanes 7a-e. The differences between the average chemical shifts $\left(\Delta \delta_{\text {av }}\right)$ on the seven-membered ring of the cations $9 \mathbf{a - e}$ and those of methanes $7 \mathbf{a}-\mathbf{e}$ are $0.68,1.03$, $1.05,1.06$, and 1.04 ppm , respectively. Since the difference between $9 \mathbf{a}$ and $7 \mathbf{a}$ is smaller than that of the other cations $\mathbf{9 b} \mathbf{e}$, the positive charge is more delocalized on the phenyl group for $9 \mathbf{a}$ as compared with those of the other cations $9 \mathbf{b}-\mathbf{e}$. In contrast, the positive charge is more delocalized on the heteroazulene moiety for cations $\mathbf{9 b} \mathbf{e}$. A similar tendency is observed for cations 10a-e, and the differences ($\Delta \delta_{\mathrm{av}}$) between $10 \mathbf{a}-\mathbf{e}$ and $\mathbf{8 a - e}$ are $0.47,0.75,0.78,0.78$, and 0.78 ppm , respectively. Thus, the plane of the phenyl group is more planar to the reference plane for cations $9 \mathbf{a}$ and 10 a while, for cations $9 \mathbf{b}-\mathbf{e}$ and $\mathbf{1 0 b} \mathbf{e}$, the plane of the phenyl group is less planar to the reference plane.

The UV-vis spectra of $\mathbf{9 a}-\mathbf{e}$ and $\mathbf{1 0 a}-\mathbf{e}$ also suggest a change of conformation (deviation of the planes of the heteroazulenes and phenyl group). The longest wavelength absorption maxima of $9 \mathbf{9 a} \mathbf{e}$ and 10a-e are given in Table 4, along with those of $\mathbf{2 a - d}$ and $\mathbf{3 a - c}$. The longest wavelength absorption maxima of 2a-d appear at 592 to $627 \mathrm{~nm},{ }^{\mathbf{1 8}}$ and those of $\mathbf{3 a - c}$ appear at 615 to $639 \mathrm{~nm} .^{4,6,9}$ The decrease of electron-donating ability of the substituent on the phenyl group induces a red shift of the maxima. This behavior has been explained by MO calculations. ${ }^{24}$ Since the decrease of electron-donating ability of the substituent on a position having a large coefficient in the LUMO causes lowering of the energy level in the LUMO, this change causes a red shift of the absorption maxima (i.e., 2a-d, $\mathbf{3 a - c}$). In a similar manner, the decrease of electron-donating ability of the substituent on a position having a large coefficient in the HOMO induces lowering of the energy level in the HOMO, and thus, causes the blue shift of the absorption maxima. However, no change in the absorption maxima of $\mathbf{9 b} \mathbf{e}$ and $\mathbf{1 0 b} \mathbf{e}$ is observed. These features are explained as follows: since the plane of the phenyl group in $\mathbf{9 b} \mathbf{e}$ and $\mathbf{1 0 b}-\mathbf{e}$ is twisted against the reference plane (large θ_{1}), the phenyl groups in $9 \mathbf{b} \mathbf{e}$ and $\mathbf{1 0 b}-\mathbf{e}$ do not have effective π-conjugation to the cationic center (vide supra). Thus, the 4-position of the phenyl group in $\mathbf{9 b} \mathbf{e}$ and $\mathbf{1 0 b} \mathbf{e}$ has no coefficient in the HOMO or LUMO. In contrast, the absorption maxima of 9a and 10a appear as two bands and are different from those of $\mathbf{9 b} \mathbf{e}$ and 10b- \mathbf{e}. The additional band may arise from the contribution of the canonical structure of dimethyl(4-methylidenecyclohexa-

2,5-dien-1-ylidene)ammonium for the 4-dimethylaminophenyl group. This feature is also a typical property of triphenylmethyl cation derivatives. Thus, the plane of the phenyl group having greater stabilizing ability on 9a and 10a is more planar with respect to the reference plane, and 9 a and 10a have two absorption maxima like the triphenylmethyl cation derivatives. Thus, the UV-vis spectra can also rationalize the conformational change of the three aromatic rings, depending on the substituent on the phenyl group. Based on the present studies, the stabilizing ability of the 4 -substituted phenyl group and heteroazulenes on the cations is found to be in the order of 4-dimethylaminophenyl $>1,2$-dihydro-2-oxo- N-phenylcyclohepta $[b]$ -pyrrol-3-yl >2-oxo- 2 H -cyclohepta $[b]$ furan-3-yl ~ 4-methoxyphenyl.

Conclusion

Efficient synthesis and properties of relatively stable novel types of diheteroazulen-3-ylphenylmethyl cations 9a-e and 10a-e have been studied. The stabilities of $9 \mathbf{a}-\mathbf{e}$ and $10 \mathbf{a}-\mathbf{e}$ were examined by the $\mathrm{p} K_{\mathrm{R}^{+}}$values and the reduction potentials were measured by CV. A good linear correlation between $\mathrm{p} K_{\mathrm{R}^{+}}$ values and reduction potentials was obtained for the cations $9 \mathbf{a}-\mathbf{e}$ and 10a-e and the heteroazulenes are found to stabilize not only cations but also radicals and anions. The $\mathrm{p} K_{\mathrm{R}^{+}}$values of the cations $9 \mathbf{a}-\mathbf{e}$ and $10 a-\mathbf{e}$ did not correlate with the substituent constants of the Hammett equation. This was ascribed to the conformational change depending on the electrondonating ability of the 4 -substituted phenyl group.

Experimental

IR spectra were recorded on a HORIBA FT-710 spectrometer. Mass spectra and high-resolution mass spectra were run on JMS-AUTOMASS 150 and JMS-SX102A spectrometers. Unless otherwise specified, ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JNM-lambda 500 spectrometer using CDCl_{3} as the solvent, and the chemical shifts are given relative to SiMe_{4} as internal standard: J-values are given in Hz . Mps were recorded on a Yamato MP-21 apparatus and are uncorrected. The heteroazulenes, $2 H$-cyclohepta[$b]$ furan-2-one 5^{11} and 1,2 -dihydro- N-phenylcyclohepta[b]pyrrol-2-one $\mathbf{6}^{12}$ were prepared as described previously.

General procedure for the preparation of heteroazulenesubstituted methanes 7a-e and 8a-e

A solution of heteroazulene $5(2 \mathrm{mmol})$ or $6(2 \mathrm{mmol})$ and benzaldehyde or 4-substituted benzaldehyde 4 (1 mmol) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and TFA $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at rt for 24 h . After the reaction was completed, the reaction mixture was poured into aqueous NaHCO_{3} solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting residue was purified through column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ by using hexaneethyl acetate $(1: 1)$ as the eluent to give the products $7 \mathbf{a}-\mathbf{e}$ and $\mathbf{8 a - e . ~ T h e ~ r e s u l t s ~ a r e ~ s u m m a r i z e d ~ i n ~ T a b l e ~} 2$.

Compound 7a. Orange prisms; mp $216-217^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 2.93(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.69(2 \mathrm{H}, \mathrm{d}$, J 8.8, $\mathrm{Ph}-3,5$), 6.75-6.79 (2H, m, H-6), 6.91-6.95 (6H, m, H-5,7,8), 7.07 (2H, d, J 8.8, Ph-2,6), 7.43 (2H, d, J 11.4, H-4); $\delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 34.4,40.6,109.7,112.9,113.7,124.4,128.2$, $128.3,130.8,131.9,134.4,148.5,149.5,157.6,169.6 ; v_{\max }\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1757,1267 ; \mathrm{m} / \mathrm{z}$ (rel. int.) $423\left(\mathrm{M}^{+}, 68.5\right), 234(100 \%)$ (Found: C, 76.6; H, 4.9; N, 3.3. $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\mathrm{C}, 76.58 ; \mathrm{H}$, 5.00 ; N, 3.31\%).

Compound 7b. Orange needles; mp 137-139 ${ }^{\circ} \mathrm{C}$ (from AcOEt); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.76-$ $6.82(2 \mathrm{H}, \mathrm{m}), 6.86(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ph}-2,6), 6.93-6.98(6 \mathrm{H}, \mathrm{m})$,
7.13 (2H, d, J 8.8, Ph-3,5), 7.44 (2H, d, J 11.4, H-4); $\delta_{\mathrm{C}}(125.7$ $\mathrm{MHz}) 34.4,55.3,109.2,114.0,114.2,128.2,128.6,130.4,131.0$, 132.1, 134.6, 148.6, 157.6, 158.5, 169.5; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1743$, 1271; m / z (rel. int.) $410\left(\mathrm{M}^{+}, 100 \%\right)$ (Found: C, $74.3 ; \mathrm{H}, 4.4$. $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{O}_{5} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 74.45 ; \mathrm{H}, 4.57 \%\right)$.

Compound 7c. Orange powder; mp $225-225^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.77-6.83(2 \mathrm{H}$, m), 6.94-6.99 ($6 \mathrm{H}, \mathrm{m}$), $7.23(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{Ph}-2,6), 7.27(1 \mathrm{H}, \mathrm{t}$, $J 7.7, \mathrm{Ph}-4), 7.33$ (2H, dd, J 8.1, 7.7, Ph-3,5), 7.43 (2H, d, J11.3, $\mathrm{H}-4)$; $\delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 35.0,108.9,114.1,127.0,127.6,128.2$, $128.8,131.0,132.2,134.6,136.9,148.6,157.6,169.5 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1743,1271 ; \mathrm{m} / \mathrm{z}$ (rel. int.) $380\left(\mathrm{M}^{+}, 88.1\right), 77$ (100%) (Found: C, 78.8; H, 4.0. $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{C}, 78.94 ; \mathrm{H}, 4.24 \%$).

Compound 7d. Orange prisms; mp 204-205 ${ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.80-6.86(2 \mathrm{H}$, m), 6.96-7.03 (6H, m), 7.16 ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ph}-3,5$), 7.29 ($2 \mathrm{H}, \mathrm{d}$, $J 8.6, \mathrm{Ph}-2,6), 7.48(2 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{H}-4) ; \delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 34.5$, 108.4, 114.3, 128.1, 128.9, 129.0, 131.1, 132.4, 132.8, 135.0, 148.7, 157.6, 169.4; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1743,1267 ; m / z$ (rel. int.) $414\left(\mathrm{M}^{+}, 100 \%\right.$), 416 (33.4) (Found: C, 72.1; H, 3.4. $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{ClO}_{4}$ requires $\mathrm{C}, 72.38 ; \mathrm{H}, 3.64 \%$).

Compound 7e. Yellow powder; mp $155-156{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 5.23(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.86-6.91$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $7.01-7.08$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,7,8$), 7.35 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ph}-2,6$), 7.51 $(4 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{H}-4), 7.63(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ph}-3,5) ; \delta_{\mathrm{C}}(125.7 \mathrm{MHz})$ $35.0,107.6,110.9,114.8,118.7,127.9,128.4,131.4,132.5$, $132.7,135.4,142.5,148.9,157.6,169.2 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2225$, 1740, $1271 ; \mathrm{m} / \mathrm{z}$ (rel. int.) 405 ($\mathrm{M}^{+}, 99.0$), 232 (100%) (Found: C, 76.0; H, 3.7; N, 3.3. $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{NO}_{4} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 76.18 ; \mathrm{H}$, 3.81; N, 3.42\%).

Compound 8a. Orange powder; mp $265-266^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 2.92(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.16(1 \mathrm{H}, \mathrm{s}$, CH), 6.71-6.76 (6H, m, H-6,8, Ph-2,6), 6.83 (2H, dd, J 10.2, 9.6, H-7), 6.89 ($2 \mathrm{H}, \mathrm{dd}, J 11.4,8.5, \mathrm{H}-5$), 7.23 (2H, d, J 8.7, Ph-3.5), 7.35 (4H, d, $J 8.5$, NPh-2,6), 7.41 ($2 \mathrm{H}, \mathrm{t}, J 7.3$, NPh-4), 7.50 (4H, dd, $J 8.5,7.3$, NPh-3,5), 7.84 (2H, d, $J 11.4, \mathrm{H}-4) ; \delta_{\mathrm{C}}(125.7$ MHz) $35.2,40.9,112.7,113.1,114.2,127.7,128.3,128.8,128.8$, $129.3,129.3,130.2,130.6,134.7,134.7,141.4,145.5,149.3$, $168.9 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1669 ; m / z(\mathrm{FAB}) 574\left(\mathrm{M}^{+}+1\right)$ (Found: C, 81.4; H, 5.4; N, 7.2. $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 81.65; H, 5.45; N, 7.32\%).

Compound 8b. Reddish orange powder; mp 163-164 ${ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}\right)$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.19(1 \mathrm{H}, \mathrm{s}$, CH), 6.74-6.93 ($10 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,6,7,8$, NPh-3,5), $7.28(2 \mathrm{H}, \mathrm{d}$, $J 8.4, \mathrm{NPh}-2,6), 7.35$ (4H, d, J 7.3, Ph-2,6), 7.42 (2H, t, J 7.8 , NPh-4), 7.51 (4 H , dd, $J 7.8,7.3$, NPh-3.5), 7.83 ($2 \mathrm{H}, \mathrm{d}, J 11.4$, $\mathrm{H}-4) ; \delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 35.2,55.2,112.9,113.7,113.9,128.4$, 128.7, 129.1, 129.1, 129.4, 129.4, 130.4, 130.7, 131.6, 134.4, 141.3, 145.4, 158.0, $168.7 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685 ; \mathrm{m} / z$ (FAB) 560 $\left(\mathrm{M}^{+}\right)$(Found: C, 78.8; H, 4.9; N, 4.7. $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \frac{2}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 78.87 ; \mathrm{H}, 5.23 ; \mathrm{N}, 4.73 \%$).

Compound 8c. Yellow powder; $\mathrm{mp} 189-190{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 6.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.76$ ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{H}-8$), 6.77 (2H, dd, $J 10.5,8.7$, H-6), 6.86 (2H, dd, J 10.5, 9.0, H-7), 6.91 ($2 \mathrm{H}, \mathrm{dd}, J 11.3,8.7, \mathrm{H}-5$), $7.23-7.28$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-4$), $7.31-$ 7.38 ($8 \mathrm{H}, \mathrm{m}, \mathrm{NPh}-2,6, \mathrm{Ph}-2,3,5,6$), 7.43 (2H, t, J 7.4, NPh-4), $7.51(4 \mathrm{H}, \mathrm{dd}, J 7.9,7.4, \mathrm{NPh} 3,5), 7.82(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{H}-4)$; $\delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 36.0,113.0,113.5,126.3,128.1,128.4,128.5$, $128.8,129.2,129.4,129.5,130.4,130.8,134.5,139.6,141.4$, 145.5, 168.8; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685 ; \mathrm{m} / \mathrm{z}$ (FAB) $530\left(\mathrm{M}^{+}\right)$ (Found: C, 82.2; $\mathrm{H}, 5.0 ; \mathrm{N}, 5.1 . \mathrm{C}_{37} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \frac{-1}{2} \mathrm{H}_{2} \mathrm{O}$ requires C , 82.35; H, 5.04; N, 5.19\%).

Compound 8d. Reddish orange prisms; mp $159-160^{\circ} \mathrm{C}$ (from AcOEt); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 6.20(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.78(2 \mathrm{H}, \mathrm{d}, J 9.0$,

H-8), $6.80(2 \mathrm{H}, \mathrm{dd}, J 10.0,8.7, \mathrm{H}-6), 6.89(2 \mathrm{H}, \mathrm{dd}, J 10.0,9.0$ H-7), 6.96 ($2 \mathrm{H}, \mathrm{dd}, J 11.4,8.7, \mathrm{H}-5$), 7.27 ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ph}-3,5$), 7.30 (2H, d, J 9.0, Ph-2,6), 7.35 (4H, d, J 7.8, NPh-2,6), 7.43 ($2 \mathrm{H}, \mathrm{t}, J 7.43, \mathrm{NPh} 4$), 7.52 (4H, dd, $J 7.8,7.3$, NPh-3.5), $7.87(2 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{H}-4) ; \delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 35.4,112.9,113.2$, 128.5, 128.6, 128.7, 129.1, 129.4, 129.5, 129.6, 130.6, 131.1, 132.0, 134.4, 138.0, 141.6, 145.4, 168.6; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685$; m / z (FAB) $564\left(\mathrm{M}^{+}\right)$(Found: C, 77.6; H, 4.3; N, 4.9. $\mathrm{C}_{37} \mathrm{H}_{25^{-}}$ $\mathrm{ClN}_{2} \mathrm{O}_{2} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 77.41 ; \mathrm{H}, 4.56 ; \mathrm{N}, 4.88 \%\right)$.

Compound 8e. Orange powder; mp 181-182 ${ }^{\circ} \mathrm{C}$ (from AcOEt); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 6.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.83(2 \mathrm{H}, \mathrm{d}, J 9.1$, H-8), 6.84 ($2 \mathrm{H}, \mathrm{dd}, J 9.9,8.6, \mathrm{H}-6$), 6.93 (2 H , dd, J 9.9, 9.1, H-7), 7.00 (2 H, dd, $J 11.5,8.6, \mathrm{H}-5$), 7.35 ($4 \mathrm{H}, \mathrm{d}, \mathrm{NPh}-2,6$), 7.45 ($2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{NPh}-4$), 7.47 ($2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{Ph}-3,5$), $7.53(4 \mathrm{H}$, dd, J 8.2, 7.5, NPh-3,5), 7.60 (2H, d, J 8.4, Ph-2,6), 7.90 (2H, d, $J 11.5, \mathrm{H}-4) ; \delta_{\mathrm{C}}(125.7 \mathrm{MHz}) 36.0,110.0,112.2,113.5,113.6$, 119.2, 128.6, 128.9, 129.5, 129.5, 129.8, 130.9, 131.6, 132.2, 134.3, 141.8, 145.4, 145.6, 168.4; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2227,1685$; $\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 556\left(\mathrm{M}^{+}+1\right)$ (Found: C, 79.4; H, 4.7; N, 6.9. $\mathrm{C}_{38} \mathrm{H}_{25^{-}}$ $\mathrm{N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $79.56 ; \mathrm{H}, 4.74 ; \mathrm{N}, 7.32 \%$).

General synthetic procedure for methylium hexafluorophosphates 9a-e $\cdot \mathrm{PF}_{6}{ }^{-}$and 10a-e $\cdot \mathrm{PF}_{6}{ }^{-}$

To a stirred solution of heteroazulene-substituted methane derivatives $7 \mathrm{a}-\mathrm{e}$ and $\mathbf{8 a - e}(0.25 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added DDQ $(70 \mathrm{mg}, 0.3 \mathrm{mmol})$ and the mixture was stirred at rt for 1 h until the reaction was completed, in each case. To the reaction mixture was added 60% aqueous $\operatorname{HPF}_{6}\left(1 \mathrm{~cm}^{3}\right)$ solution and the resulting mixture was filtered. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ether was added to the solution. The precipitated crystals were collected by filtration, and washed with ether to give the salts $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$. The results are summarized in Table 1.

Compound 9a. $\mathbf{P F}_{6}{ }^{-}$. Dark brown powder; mp $211-212^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 3.38(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 6.94 (2H, d, $J 9.6, \mathrm{Ph}-2,6), 7.53-7.66$ ($6 \mathrm{H}, \mathrm{m}$), 7.68 ($2 \mathrm{H}, \mathrm{d}, J 9.6$, $\mathrm{Ph}-3,5), 7.77-7.82(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 42.2$, 116.3, 118.1, 123.3, 127.0, 132.1, 138.2, 139.7, 140.4, 142.2, $154.9,156.6,160.6,161.9,166.4 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1749,1268$, $845 ; \lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 671$ (4.17), 575 (4.18), 418 (sh, 3.52), 355 (3.75), 255 (4.19); m / z (FAB) 422 $\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6} 422.1453 . \mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 422.1393$) (Found: C, 56.3; H, 3.7; N, 2.4. $\mathrm{C}_{27} \mathrm{H}_{20}$ $\mathrm{F}_{6} \mathrm{NO}_{4} \mathrm{P} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 56.26 ; \mathrm{H}, 3.67 ; \mathrm{N}, 2.43 \%\right)$.

Compound 9b $\cdot \mathbf{P F}_{6}{ }^{-}$. Dark brown powder; mp $167-168^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 3.97(3 \mathrm{H}, \mathrm{s}$, OMe), 7.11 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ph}-3,5$), 7.75 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ph}-2,6$), 7.77 ($2 \mathrm{H}, \mathrm{d}, J 10.3, \mathrm{H}-8$), 7.95 ($2 \mathrm{H}, \mathrm{dd}, J 10.3,9.5, \mathrm{H}-7$), 8.01 ($2 \mathrm{H}, \mathrm{dd}, J 9.6,9.5, \mathrm{H}-6$), $8.22(2 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{H}-4), 8.27(2 \mathrm{H}, \mathrm{dd}$, $J 9.8,9.6, \mathrm{H}-5) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 57.1,109.5,117.2$, $128.4,136.3,137.2,142.4,144.9,145.0,154.9,164.5,164.8$, 166.2, 167.9 (one carbon overlapping); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1752$, 1395, 1258, $841 ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right)$ 621 (4.55), 537 (4.00), 381 (3.80), 281 (4.17), 248 (4.40), 224 (4.39); m / z (FAB) $409\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6} 409.1088$. $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 409.1076$) (Found: C, 55.9 ; H, 3.1. $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{P}$ requires C, $56.33 ; \mathrm{H}, 3.09 \%$).

Compound 9c $\cdot \mathrm{PF}_{6}{ }^{-}$. Dark brown powder; mp $183-184^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 7.59(2 \mathrm{H}, \mathrm{dd}$, $J 7.9,7.7, \mathrm{Ph}-3,5), 7.68$ (2H, d, J 10.2, H-8), 7.74 (2H, d, J 7.9, Ph-2,6), 7.82 (1H, t, J7.7, Ph-4), 7.99 (2H, dd, J10.2, 9.7, H-7), $8.08(2 \mathrm{H}, \mathrm{t}, J 9.7, \mathrm{H}-6), 8.29(2 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{H}-4), 8.35(2 \mathrm{H}, \mathrm{dd}$, $J 10.0,9.7, \mathrm{H}-5) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 110.3,129.2,131.4$,
132.8, 135.6, 138.4, 143.0, 145.2, 145.9, 154.1, 164.0, 165.4, 166.6 (one carbon overlapping); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1763,1395$, 1262, $843 ; \lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 621$ (4.18), 440 (3.47), 3.89 (3.46), 275 (3.87), 275 (3.87), 248 (4.04); m / z (FAB) $379\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 379.0985. $\mathrm{C}_{25} \mathrm{H}_{15}$ $\mathrm{F}_{6} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 379.0971$) (Found: C, 56.7; H, 2.9; N, 1.7. $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{P} \cdot \frac{1}{2} \mathrm{CH}_{3} \mathrm{CN}$ requires $\mathrm{C}, 57.31 ; \mathrm{H}, 3.05 ; \mathrm{N}$, 1.29%).

Compound 9d $\cdot \mathbf{P F}_{6}{ }^{-}$. Dark brown powder; mp $167-168^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 7.61(2 \mathrm{H}, \mathrm{d}$, $J 8.7, \mathrm{Ph} 3,5), 7.72$ (2H, d, J 8.7, Ph-2,6), 7.76 (2H, d, J 10.8, $\mathrm{H}-8), 8.05$ ($2 \mathrm{H}, \mathrm{dd}, J 10.8,9.6, \mathrm{H}-7$), 8.11 ($2 \mathrm{H}, \mathrm{dd}, J 10.0,9.6$, $\mathrm{H}-6), 8.30$ ($2 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{H}-4$), 8.38 ($2 \mathrm{H}, \mathrm{t}, 10.0, \mathrm{H}-5$); $\delta_{\mathrm{C}}(125.7$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $110.0,129.3,131.5,134.4,134.6,138.5,141.6$, 143.1, 145.4, 146.0, 153.6, 163.9, 164.7, 165.4; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1763, 1395, 1260, 844; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3}\right.\right.$ cm^{-1})) 621 (4.32), 456 ($\mathrm{sh}, 3.76$), 398 (3.95), 278 ($\mathrm{sh}, 4.12$), 250 (4.35), 220 (4.39); $m / z(\mathrm{FAB}) 413\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 413.0569. $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{ClF}_{6} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 413.0581$) (Found: C, $54.7 ; \mathrm{H}, 2.5 ; \mathrm{N}, 0.6 . \mathrm{C}_{25} \mathrm{H}_{14} \mathrm{ClF}_{6} \mathrm{O}_{4} \mathrm{P} \cdot \frac{1}{3} \mathrm{CH}_{3} \mathrm{CN}$ requires C , 54.17; H, 2.62; N, 0.81\%).

Compound 9e $\cdot \mathrm{PF}_{6}{ }^{-}$. Dark brown powder; mp $173-174{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 7.69(2 \mathrm{H}, \mathrm{d}$, $J 10.5, \mathrm{H}-8), 7.86$ ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{Ph} 3,5$), 7.92 ($2 \mathrm{H}, \mathrm{d}, J 8.6$, Ph-2,6), 8.09 (2H, dd, J 10.5, 9.5, H-7), 8.16 (2H, dd, J 9.8, 9.5, $\mathrm{H}-6), 8.35$ ($2 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{H}-4$), 8.43 ($2 \mathrm{H}, \mathrm{dd}, J 10.2,9.8$, H-5); $\delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 110.2,117.4,119.1,129.7,133.2$, 134.8, 139.2, 140.5, 143.5, 145.7, 146.6, 153.0, 163.8, 165.8 (one carbon overlapping); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2227,1735,1266,839$; $\lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 621$ (3.62), 391 (3.98), 262 (4.18), 225 (4.28); m / z (FAB) $404\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 404.0943. $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6}$ 404.0923) (Found: C, 51.5; H, 2.4; N, 2.3. $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{P} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $51.13 ; \mathrm{H}, 2.54 ; \mathrm{N}, 2.55 \%)$.

Compound 10a $\cdot \mathbf{P F}_{6}{ }^{-}$. Dark brown powder; mp $212-214^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 3.30(3 \mathrm{H}, \mathrm{s}$, NMe), 6.91 ($2 \mathrm{H}, \mathrm{d}, J$ 8.8, Ph-3,5), 7.42-7.45 ($6 \mathrm{H}, \mathrm{m}$), 7.50 ($2 \mathrm{H}, \mathrm{dd}, J 9.8,9.3$), 7.54 ($2 \mathrm{H}, \mathrm{d}, J 10.3, \mathrm{H}-4$), 7.59 ($2 \mathrm{H}, \mathrm{t}, J 7.3$, NPh-4), 7.63-7.70 (8H, m), 7.75 (2H, d, J 8.8, Ph-2,6); δ_{C} (125.7 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) 41.1, 114.3, 120.3, 125.1, 128.3, 129.6, 130.0, 131.1, 132.1, 133.3, 134.9, 135.7, 138.0, 138.5, 148.8, 150.2, 157.6, 159.6, 174.1; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685,843 ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) /$ $\mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 677$ (4.67), 614 (sh, 4.58), 411 (3.93), 298 (4.51), 262 (4.53); $m / z(\mathrm{FAB}) 572\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 572.2354. $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6}$ 572.2326) (Found: C, 65.5; H, 4.1; N, 5.9. $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires C , 65.27; H, 4.21; N, 5.86\%).

Compound 10b $\cdot \mathrm{PF}_{6}{ }^{-}$. Dark brown powder; mp 272-273 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 3.95(3 \mathrm{H}, \mathrm{s}$, OMe), 7.10 ($2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ph}-3,5$), 7.46 ($4 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{NPh}-2,6$), 7.61 ($2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NPh}-4$), 7.65-7.68 ($6 \mathrm{H}, \mathrm{m}$), 7.71-7.73 (4 H , m), $7.76(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{Ph}-2,6), 7.87-7.94(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(125.7$ $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $56.6,114.8,116.4,124.2,129.0,130.2,130.7$, $130.9,134.3$, 135.7, 136.2, 138.5, 140.9, 142.4, 149.6, 154.0, 163.3, 165.4, 166.4; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1696,838 ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) /$ $\mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 652$ (4.61), 534 (4.05), 419 (3.79), 305 (4.47); $m / z(\mathrm{FAB}) 559\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 559.2050. $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 559.2023$) (Found: C, 63.6; $\mathrm{H}, 3.6 ; \mathrm{N}, 4.2 . \mathrm{C}_{38} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires C, 63.96; H, 3.95; N, 3.93\%).

Compound 10c $\cdot \mathbf{P F}_{6}{ }^{-}$. Dark brown powder; mp $258-259^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 7.47(4 \mathrm{H}, \mathrm{d}$, $J 6.8, \mathrm{NPh}-2,6), 7.57$ (2 H , dd, $J 8.5,7.3, \mathrm{Ph}-3,5$), 7.62 ($2 \mathrm{H}, \mathrm{t}$, J 7.3, NPh-4), 7.67 (4H, dd, $J 7.3,6.8, \mathrm{NPh} 3,5), 7.70-7.81$ $(11 \mathrm{H}, \mathrm{m}), 7.98(2 \mathrm{H}, \mathrm{t}, J 10.0, \mathrm{H}-5) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$
115.7, 125.0, 129.2, 130.9, 131.0, 131.2, 133.2, 134.4, 134.4, $136.8,138.5,139.2,141.4,143.3,149.2,154.8,163.5,165.3$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1696,840 ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3}\right.\right.$ cm^{-1})) 652 (4.93), 478 (3.99), 402 (sh, 4.11), 357 (sh, 432), 303 (4.63); m / z (FAB) $529\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right.$) (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 529.1943. $\mathrm{C}_{37^{-}}$ $\mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 529.1918$) (Found: C, 65.1; H, 3.7; $\mathrm{N}, 5.7 . \mathrm{C}_{37} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P} \cdot \mathrm{CH}_{3} \mathrm{CN}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 3.94 ; \mathrm{N}$, 5.87%).

Compound 10d $\cdot \mathrm{PF}_{6}{ }^{-}$. Dark brown powder; mp $270-271{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 7.47(4 \mathrm{H}, \mathrm{d}$, $J 6.9$, NPh-2,6), 7.57 (2H, d, $J 8.7$, NPh-3,5), 7.62 ($2 \mathrm{H}, \mathrm{t}, J 7.3$, NPh-4), 7.67 (4H, dd, $J 7.3,6.9$, NPh-3,5), 7.72 (2H, d, $J 10.2$, H-8), 7.75 ($2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Ph}-2,6$), 7.78-7.82 ($4 \mathrm{H}, \mathrm{m}$), 7.86-7.89 $(2 \mathrm{H}, \mathrm{m}), 7.97-8.03(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 115.3$, $125.2,129.2,131.0,131.0,131.2,134.3,134.9,137.0,139.3$, 140.3, 141.7, 143.5, 148.9, 154.9, 161.6, 165.3 (one carbon overlapping); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1696,841 ; \lambda_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}(\log$ $\left.\left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 652$ (4.97), 487 (3.94), 404 (4.05), 358 (sh, 4.21), 302 (4.54); m / z (FAB) $563\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}$$\mathrm{PF}_{6}$ 563.1566. $\mathrm{C}_{37} \mathrm{H}_{24} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6}$ 563.1528) (Found: C, 61.9; $\mathrm{H}, 3.2 ; \mathrm{N}, 3.8 . \mathrm{C}_{37} \mathrm{H}_{24} \mathrm{ClF}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P} \cdot \frac{1}{3} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 62.15 ; \mathrm{H}, 3.48 ; \mathrm{N}, 3.92 \%)$.

Compound 10e $\cdot \mathbf{P F}_{6}{ }^{-}$. Dark brown powder; mp $262-264{ }^{\circ} \mathrm{C}$ (from $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 7.47(4 \mathrm{H}, \mathrm{d}, J 7.6$, NPh-2,6), 7.62 ($2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{NPh}-4$), 7.67 (4 H , dd, $J 7.6,7.3$, NPh-3,5), 7.76 (2H, d, J 10.6, H-8), 7.81-7.90 (10H, m), 8.02$8.07(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(125.7 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) 115.2,116.3,119.3$, $125.5,129.1,131.1,131.2,133.6,134.2,134.2,137.5,139.6$, 141.9, 142.9, 144.0, 148.2, 155.3, 160.3, 165.2; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2227, 1701, 838; $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{nm}\left(\log \left(\varepsilon / \mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right)\right) 652$ (4.52), 459 (sh, 3.65), 402 (3.83), 359 (sh, 4.00), 315 (4.33), 245 (4.54); m / z (FAB) $554\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{PF}_{6}$ 554.1873. $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}-\mathrm{PF}_{6} 554.1870$) (Found: C, 64.5; $\mathrm{H}, 3.3$; $\mathrm{N}, 6.0 . \mathrm{C}_{38} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{P}$ requires C, 65.24; H, 3.46; N, 6.01\%).

Determination of the $\mathrm{p} \boldsymbol{K}_{\mathrm{R}^{+}}$value of methyl cations 9a-e and 10a-e

Buffer solutions of slightly different acidities were prepared by mixing aqueous solutions of $\mathrm{KH}_{2} \mathrm{PO}_{4}(0.1 \mathrm{M})$ and NaOH (0.1 M) (for $\mathrm{pH} 6.0-8.0), \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}(0.025 \mathrm{M})$ and $\mathrm{HCl}(0.1 \mathrm{M})$ (for $\mathrm{pH} 8.2-9.0$), $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}(0.025 \mathrm{M}$) and $\mathrm{NaOH}(0.1 \mathrm{M}$) (for $\mathrm{pH} 9.2-10.8$), $\mathrm{Na}_{2} \mathrm{HPO}_{4}(0.05 \mathrm{M})$ and $\mathrm{NaOH}(0.1 \mathrm{M})$ (for pH $11.0-12.0)$, and $\mathrm{KCl}(0.2 \mathrm{M})$ and $\mathrm{NaOH}(0.1 \mathrm{M})$ (for $\mathrm{pH} 12.0-$ 14.0) in various portions. For the preparation of sample solutions, $1 \mathrm{~cm}^{3}$ portions of the stock solution, prepared by dissolving $3-5 \mathrm{mg}$ of the cation $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$in $\mathrm{MeCN}\left(20 \mathrm{~cm}^{3}\right)$, were diluted to $10 \mathrm{~cm}^{3}$ with the buffer solution $\left(8 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeCN}\left(1 \mathrm{~cm}^{3}\right)$. The UV-vis spectrum was recorded for each cation $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$in 10 different buffer solutions. Immediately after recording the spectrum, the pH of each solution was determined on a pH meter calibrated with standard buffers. The observed absorbance at the specific absorption wavelengths (664 nm for $9 \mathbf{9} ; 604 \mathrm{~nm}$ for $9 \mathbf{9 b} ; 606 \mathrm{~nm}$ for $\mathbf{9 c} ; 608 \mathrm{~nm}$ for $\mathbf{9 d} ; 606 \mathrm{~nm}$ for $\mathbf{9 e} ; 665 \mathrm{~nm}$ for 10a; 632 nm for 10b; 634 nm for $\mathbf{1 0 c} ; 634 \mathrm{~nm}$ for 10d; 635 nm for 10e) of each cation $\mathbf{9 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$and $\mathbf{1 0 a}-\mathbf{e} \cdot \mathbf{P F}_{6}{ }^{-}$was plotted against pH to give a classical titration curve, whose midpoint was taken as the $\mathrm{p} K_{\mathrm{R}^{+}}$value.

Cyclic voltammetry of methyl cations 9a-e and 10a-e

The reduction potentials of $9 \mathrm{a}-\mathbf{e}$ and $\mathbf{1 0 a}-\mathbf{e}$ were determined by means of a CV-27 voltammetry controller (BAS Co). A threeelectrode cell was used, consisting of Pt working and counter electrodes and a reference $\mathrm{Ag} / \mathrm{AgNO}_{3}$ electrode. Nitrogen was bubbled through an acetonitrile solution $\left(4 \mathrm{~cm}^{3}\right)$ of each compound ($0.5 \mathrm{mmol} \mathrm{dm}{ }^{-3}$) and $\mathrm{Bu}_{4} \mathrm{NClO}_{4}\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ to
deaerate it. The measurements were made at a scan rate of 0.1 V s^{-1} and the voltammograms were recorded on a WX-1000-UM019 (Graphtec Co) X-Y recorder. Immediately after the measurements, ferrocene $(0.1 \mathrm{mmol})\left(E_{1 / 2}=+0.083\right)$ was added as the internal standard, and the observed peak potentials were corrected with reference to this standard. The compounds exhibited reversible reduction-oxidation waves; the results are summarized in Table 2.

Acknowledgements

Financial support from Waseda University Grants for Special Research Projects is gratefully acknowledged. The authors also thank the Materials Characterization Central Laboratory, Waseda University, for technical assistance with the special data and elemental analyses.

References

1 S. Ito, N. Morita and T. Asao, Tetrahedron Lett., 1991, 32, 773. Synthesis of the tris(4,6,8-trimethylazulen-1-yl)methyl cation is previously reported, K. Hafner, H. Pelster and J. Schneider, Liebigs Ann. Chem., 1961, 650, 62.
2 S. Ito, N. Morita and T. Asao, Tetrahedron Lett., 1994, 35, 751.
3 S. Ito, N. Morita and T. Asao, Tetrahedron Lett., 1994, 35, 3723.
4 S. Ito, N. Morita and T. Asao, Bull. Chem. Soc. Jpn., 1995, 68, 1409.

5 S. Ito, N. Morita and T. Asao, Bull. Chem. Soc. Jpn., 1995, 68, 2011; S. Ito, N. Morita and T. Asao, Bull. Chem. Soc. Jpn., 1995, 68, 2639.

6 S. Ito, S. Kikuchi, N. Morita and T. Asao, Bull. Chem. Soc. Jpn., 1999, 72, 839.

7 S. Ito, S. Kikuchi, N. Morita and T. Asao, J. Org. Chem., 1999, 64, 5815.

8 S. Ito, M. Fujita, N. Morita and T. Asao, Chem. Lett., 1995, 475; S. Ito, M. Fujita, N. Morita and T. Asao, Bull, Chem. Soc. Jpn., 1995, 68, 3611.
9 S. Ito, H. Kobayashi, S. Kikuchi, N. Morita and T. Asao, Bull. Chem. Soc. Jpn., 1996, 69, 3225.
10 S. Ito, S. Kikuchi, H. Kobayashi, N. Morita and T. Asao, J. Org. Chem., 1997, 62, 2423.
11 S. Seto, Sci. Rep. Tohoku Univ., Ser. 1, 1953, 37, 367.
12 M. Nitta and S. Naya, J. Chem. Res. (S), 1998, 522; M. Nitta and S. Naya, J. Chem. Res. $(M), 1998,2263$.

13 R. W. Alder and C. Wilshire, J. Chem. Soc., Perkin Trans. 2, 1975, 1464; T. Nozoe, T. Toda, T. Asao and A. Yamanouchi, Bull. Chem. Soc. Jpn., 1968, 41, 2935.
14 N. Abe and T. Takehiro, Chem. Lett., 1987, 1727; N. Abe and T. Takehiro, Bull. Chem. Soc. Jpn., 1988, 61, 1225.

15 S. Naya and M. Nitta, J. Chem. Soc., Perkin. Trans. 1, 2000, 2777.
16 E. M. Arnett and R. D. Bushick, J. Am. Chem. Soc., 1964, 86, 1564.
17 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902; M. J. S. Dewar and E. G. Zoebisch, THEOCHEM, 1988, 180, 1.
18 C. D. Ritchie, W. F. Sager and E. S. Lewis, J. Am. Chem. Soc., 1962, 84, 2349.
19 S. Lovell, B. J. Marquardt and B. Kahr, J. Chem. Soc., Perkin. Trans. 2, 1999, 2241.
20 H. H. Freedman, in Carbonium Ions, eds. G. A. Olah and P. v. R. Schleyer, Wiley-Interscience, New York, 1973.
21 H. G. Viehe, R. Merényi, L. Stella and Z. Janousek, Angew. Chem., Int. Ed. Engl., 1979, 18, 917 and references cited therein.
22 K. Okamoto, K. Takeuchi, K. Komatsu, Y. Kubota, R. Ohara, M. Arima, K. Takahashi, Y. Waki and S. Shirai, Tetrahedron, 1983, 39, 4011 and references cited therein.
23 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
24 J. Griffiths and K. J. Pender, Dyes Pigm., 1981, 2, 37.

